[image: 说明: logonew] www.bio-protocol.org/e3546
Bio-protocol 10(05): e3546.
DOI:10.21769/BioProtoc.354655555111112000

Python script (hplc_data_process.py) README
This document is intended to provide required background for the effective use of hplc_data_process.py.
hplc_data_process.py is a small program that is intended to assist in the manipulation of large numbers of .xls files that are generated during the processing of HPLC files.

How the software works:
The user provides the program with the target directory, the number of compounds in the .xls file that the program should look for, and what the program should call the .xls file that is generates with the combined data.
The program then opens all .xls files that are found in the target directory one after another. Based on the layout of the .xls files generated by the Chromeleon 8 software, the program selects a number of cells of data as indicated by the user.
The program saves that subset of the .xls file into a larger data frame, and repeats the process until all of the .xls files found in that folder have been opened and the desired data has been extracted.
The program then saves the dataframe that combines all of the data as an .xls file. The file contains all of the data organized in columns with the columns named after the files that the data was taken out of.

How to run the software:
The software is meant to run on Windows 10.
First download and install Spyder5 (Anaconda3) with python version 3.6.
Run spyder, and open the hplc_data_process.py file.
Alter the values as indicated within the software comments. Briefly, replace x in line number 17 with the number of sugars you want to analyze. Replace "y" with "your directory".
The directory should be written as "\\\drive\\folder\\next_folder\\target_folder". Replace "z" in line 23 with "your_file_name.xls".
You should then save the altered version of the program.
You can then either run the program by hitting 'F5' or by running the .py file by double clicking on it in windows explorer.

Troubleshooting:
If the program does not execute as expected make sure that you have not modified the location of the desired integrations in the target .xls files. The program looks in row 29 and column 5 of the .xls file, so if the data you want is not there then the program wont work. Additionally, the program requires that the .xls has a first sheet with the name "Integration" or else it will be ignored.
Aside from this, make sure that you have the directory written properly and that the software versions are as was described above.

[bookmark: _GoBack]Python script (hplc_data_process.py)
-*- coding: utf-8 -*-
"""
Created on Wed Oct 9 17:41:00 2019
@author: hduncan
"""
x is the number of total compounds to be analyzed
y should be replaced with desired working directory
z should be replaced with desired final file name

these are the inputs

select the number of compounds you want to analyze
#if including glucosamine curve in analysis, set number of inputs to 10; if not, then 9
number_of_compounds_ = x

set the current directory
manual_dir_ = "y"

set the desired file name
final_file_name_ = "z"

import required modules

import pandas as pd
import os as os
import numpy as np
from itertools import compress

get the directory where the file is located
#abspath = os.path.abspath("hplc_data_process.py")
#dname = os.path.dirname(abspath)
#os.chdir(dname)
os.chdir(manual_dir_)

get the file names in the folder where you are working
from os import listdir
from os.path import isfile, join
onlyfiles = [f for f in listdir(manual_dir_) if isfile(join(manual_dir_, f))]

figure out which files contain the desired information
first get rid of anything that isn't .xls

sel_ = [".xls" in i for i in onlyfiles]
only_excel_ = list(compress(onlyfiles, sel_))

create a holder for sheet names
first_sheet_ = ["none"] * len(only_excel_)

counter_ = 0

for file_ in only_excel_:

 File_name = file_

 # extract sheet names
 main_file_ = pd.ExcelFile(File_name)
 sheet_names_ = main_file_.sheet_names

 # save the sheet names
 first_sheet_[counter_] = sheet_names_[0]

 counter_ = counter_ + 1

sel_ = ["Integration" in i for i in first_sheet_]

desired_data_ = list(compress(only_excel_, sel_))

now that you have the filtered list of the excel file names you want
you can create a holder for the data that you will extract

areas_ = pd.DataFrame(np.zeros((len(desired_data_), number_of_compounds_)))

change the row names
areas_.index = desired_data_

for file_ in desired_data_:

 File_name = file_

 # load the file
 main_file_ = pd.ExcelFile(File_name)
 sheet_names_ = main_file_.sheet_names

 # get the integration
 data_ = pd.read_excel(io = File_name, sheetname = "Integration")

 # This selects the subset of the data in the excel file that is wanted
 specific_data_ = pd.DataFrame(data_.iloc[28:28+number_of_compounds_, 4])

 # rename and transform the data
 specific_data_.index = areas_.columns

 specific_data_.columns = [file_]

 specific_data_ = specific_data_.transpose()

 # save the information to the dataframe
 areas_.update(specific_data_)

areas_.to_excel(final_file_name_)

Copyright © 2020 The Authors; exclusive licensee Bio-protocol LLC.								 	2
image1.png
bio-protocol

